Search for the Chiral Magnetic Effect at STAR

Gang Wang (UCLA)

for the STAR Collaboration
Outline

- Motivation
- STAR Experiment
- Chiral Magnetic Effect (CME)
- Summary
- Outlook
What if the vacuum/domain we live in is not a true ground state?

- "false" vacua will topple into lower states
- we may learn from the Micro-Bangs
QCD vacuum transition

- nonzero topological charge
- chirality imbalance (local parity violation)

\[N_L^f - N_R^f = 2Q_W, \quad Q_W \neq 0 \rightarrow \mu_A \neq 0 \]
Chiral Magnetic Effect (CME): finite chiral charge density induces an electric current along external magnetic field.

\[j_V = \frac{N_c e}{2\pi^2} \mu_A B \] \Rightarrow electric charge separation along \(B \) field

charge separation effect beyond conventional physics background

\[
\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi_{\pm} - \Psi_{RP}\right)
\]

S. Voloshin, PRC 70 (2004) 057901,
A direct measurement of the P-odd quantity \(a \) should yield zero.
A direct measurement of the P-odd quantity “a” should yield zero.

\[\gamma = \left\langle \cos(\phi_\alpha + \phi_\beta - 2\psi_{RP}) \right\rangle \]

\[= \left[\langle v_{1,\alpha} v_{1,\beta} \rangle + B_{in} \right] - \left[\langle a_\alpha a_\beta \rangle + B_{out} \right] \]

Directed flow: expected to be the same for SS and OS

P-even quantity: still sensitive to charge separation
STAR experiment

Relativistic Heavy Ion Collider (RHIC)

Solenoidal Tracker at RHIC (STAR)
Azimuthal anisotropy

\[E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_{RP})] \right) \]

\[v_n = \langle \cos[n(\varphi - \Psi_{RP})] \rangle \]

The estimated reaction plane is called the event plane.

\[Q_n \cos(n\Psi_n) = Q_x = \sum_i w_i \cos(n\phi_i) \]

\[Q_n \sin(n\Psi_n) = Q_y = \sum_i w_i \sin(n\phi_i) \]

\[\Psi_n = \left(\tan^{-1} \frac{Q_y}{Q_x} \right) / n \]
\(\gamma \) at 200 GeV

- \(\gamma_{os} \gtrsim \gamma_{ss} \), consistent with CME expectation: both AuAu and CuCu
- Not explained by known event generators

HIJING: solid (Au+Au), dashed (Cu+Cu)
1st-order EP

- Consistent between different years (2004 and 2007)
- Confirmed with 1st-order EP (from spectator neutron v_1)

200 GeV Au+Au

\[\langle\cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP})\rangle \]
• Prominent correlations exist at small Δp_T and $\Delta \eta$
• Probably due to HBT+Coulomb
Modulated sign correlator (msc)

- robust after removing HBT+Coulomb effects with kinematic cuts ($\Delta\eta$ and Δp_T)
- γ weights different azimuthal regions of charge separation differently
- Modify γ such that all azimuthal regions are weighted equally
- γ is reduced to modulated sign correlator (msc)
- The charge separation signal is confirmed with msc

$$
\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_{RP}) \rangle \\
= \langle \cos(\Delta\varphi_\alpha) \cos(\Delta\varphi_\beta) - \sin(\Delta\varphi_\alpha) \sin(\Delta\varphi_\beta) \rangle \\
= \langle (M_\alpha M_\beta S_\alpha S_\beta)_{IN} \rangle - \langle (M_\alpha M_\beta S_\alpha S_\beta)_{OUT} \rangle \\
msc \equiv \left(\frac{\pi}{4} \right)^2 \left(\langle S_\alpha S_\beta \rangle_{IN} - \langle S_\alpha S_\beta \rangle_{OUT} \right)
$$

Charge-independent background (Δmsc)

\[msc = \Delta msc + \Delta N \]

\[\Delta msc = \frac{1}{N_E} \sum_{\Delta Q} \langle N(\Delta Q) \rangle \left[msc_{IN}(\Delta Q) - msc_{OUT}(\Delta Q) \right] \]

\[\Delta N = \frac{1}{N_E} \sum_{\Delta Q} \langle msc(\Delta Q) \rangle \left[N_{IN}(\Delta Q) - N_{OUT}(\Delta Q) \right] \]

- msc was split to study background
- $N_{IN}(\Delta Q)$ stands for the number of events with ΔQ units of in-plane charge separation, and $msc_{IN}(\Delta Q)$ stands for the $<msc>$ in those events.
- MEVSIM and $-v_2/N$ tell us that the CI bg is likely due to momentum conservation + v_2
Correlations of K^0_S-hadron correlation consistent with each other: no charge-dependent separation
• Correlations between \(\Lambda\) and \(h^\pm\) also show no charge-dependent separation

• Separation observed for \(h^\pm-h^\pm\) is sensitive to electric charge

• Strange quarks participate in the chiral dynamics in a similar way as \(u/d\)
Beam Energy Scan

At lower beam energies, charge separation starts to diminish.

At lower beam energies, charge separation starts to diminish.
Flow-related background

Against CME expectation, δ_{OS} is above δ_{SS}.

Indicate overwhelming background larger than any possible CME effect.

Try combining information from γ and δ to retrieve the CME contribution, H.

\begin{align*}
\gamma & \equiv \langle \cos(\phi_1 + \phi_2 - 2\Psi_{\text{RP}}) \rangle = \kappa v_2 F - H \\
\delta & \equiv \langle \cos(\phi_1 - \phi_2) \rangle = F + H,
\end{align*}
CME contribution

\[H^\kappa = \frac{\kappa v_2 \delta - \gamma}{1 + \kappa v_2} \]

- \(\kappa \approx 2 - \frac{v_{2,F}}{v_{2,\Omega}} \): \(F \) and \(\Omega \) denote the full phase space and the finite detector acceptance, respectively.

- CME signal via \(H \) decreases to zero from 19.6 GeV to 7.7 GeV.

- Probable domination of hadronic interactions over partonic ones.

- Need better estimate of \(\kappa \) and better statistics.
A dedicated trigger for events with 0-1% spectator neutrons

With magnetic field suppressed, the charge separation signal (mostly background) disappears, while v_2 is still $\sim 2.5\%$

Deformed nuclei: U+U

- Similar signals in U+U
- Use $\gamma_{OS}-\gamma_{SS}$ to quantify the signal
- N_{part} accounts for dilution effects

- A dedicated trigger for events with 0-1% spectator neutrons
- With magnetic field suppressed, the charge separation signal (mostly background) disappears, while v_2 is still $\sim 2.5\%$
Summary

• three-point correlator γ shows charge separation w.r.t RP
 - signal robust with different EPs (1st- and 2nd-order)
 - robust when suppressing HBT+Coulomb
 - robust with a reduced correlator, msc
 - robust in Au+Au, Cu+Cu, Pb+Pb and U+U
 - robust from 19.6 GeV to 2.76 TeV

• signal of charge separation seems to disappear when
 - one charged particle is replaced with a neutral strange particle
 - the collision energy is down to \sim7.7 GeV
 - the magnetic field from spectators is supressed (v_2 is still sizable)

• we also learn
 - CI bg mostly comes from momentum conservation+v_2
 - flow-related bg could be subtracted via H correlator
Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons.

For example, $^{96}_{44}$Ruthenium and $^{96}_{40}$Zirconium:
10% difference in B field \rightarrow 20% difference in γ

<table>
<thead>
<tr>
<th></th>
<th>$^{96}{44}$Ru+$^{96}{44}$Ru</th>
<th>vs</th>
<th>$^{96}{40}$Zr+$^{96}{40}$Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>=</td>
<td>vs</td>
<td>=</td>
</tr>
<tr>
<td>CMW</td>
<td>></td>
<td>vs</td>
<td>></td>
</tr>
<tr>
<td>CME</td>
<td>></td>
<td>vs</td>
<td>=</td>
</tr>
<tr>
<td>CVE</td>
<td>=</td>
<td>vs</td>
<td>=</td>
</tr>
</tbody>
</table>
Outlook: Cu+Au

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_V)</td>
<td>(\sigma)</td>
<td>((e/2\pi^2)\mu_A)</td>
</tr>
<tr>
<td>(J_A)</td>
<td>(\propto \sigma \mu_V \mu_A / T^2)</td>
<td>((e/2\pi^2)\mu_V)</td>
</tr>
</tbody>
</table>

Ohm's Law

Chiral Magnetic Effect

Chiral Electric Separation Effect

Chiral Separation Effect

Suppressed \(\gamma \) signal of charge separation in Cu+Au collisions?

in-plane charge separation
Backup slides
Particle identification

TPC $\sqrt{s_{NN}} = 39$ GeV Au + Au Collisions **TPC+ToF**

\[
\frac{dE}{dx} \text{ (keV/cm)}
\]

\[
p^*q \text{ (GeV/c)}
\]

\[
\pi^-, K^-, p
\]

\[
\frac{1}{\beta}
\]

\[
p^*q \text{ (GeV/c)}
\]

\[
\pi^-, K^-, p
\]

\[
z = \log \left(\frac{(dE/dx)_{\text{meas.}}}{(dE/dx)_{\text{theory}}} \right)
\]

H. Bichsel, NIM A. 562 (2006) 154

\[
m^2 = p^2 \left(\frac{c^2 t^2}{L^2} - 1 \right)
\]

c=velocity of light,
L= path length

\[
m^2 \text{ (GeV}^2/c^4)
\]

Counts

\[
z_{\pi^-}
\]

\[
z_{K^-}
\]

\[
z_{p^-}
\]

\[
z_{e^-}
\]

\[
z_{K^+}
\]

\[
z_{p^+}
\]

Counts

\[
n^2 \text{ (GeV}^2/c^4)
\]

\[
\text{pbar}
\]
Excellent tracking

The azimuthal angle resolution at STAR is better than 99.9%.
Dilution effect

What do we know about the position R_n after n steps?

R_n follows a Gaussian distribution: mean $= 0$, and \(\text{rms} = \sqrt{n} \)

Our measurement of PV is like R_n^2, expected to be n.

Compared with going in one fixed direction, where $R_n^2 = n^2$,
the "random-walk" measurement is diluted by a factor \(~ n \sim N_{\text{part}}\).
More on flow-related background

charge conservation/cluster + v_2

In RHIC run2012, STAR took 350M minbias events and 14M central trigger events.

Seemingly correlated!
Can we disentangle the relationship with U+U?
Possible physics background

charge conservation/cluster + v_2

\[
\langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_{RP}) \rangle \\
= \langle \cos((\phi_\alpha + \phi_\beta - 2\phi_{res}) + 2(\phi_{res} - \Psi_{RP})) \rangle \\
\approx f_{res} \langle \cos(\phi_\alpha + \phi_\beta - 2\phi_{res}) \rangle \frac{v_{2, res}}{N_{ch}}
\]
Balance function

MC simulation (no radial flow)
- $a_1 = 0, \ n_2 = 5\%, M = 200$
- $a_1 = 2\%, n_2 = 5\%, M = 200$